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Why observational causal inference? An example

Causal question

Does extensive food commodity speculation cause high food
prices? [Gilbert 2010]

Why this is relevant

If the answer is “yes”, it may make sense to modify the policy
on speculation, given lower food prices are a goal.

A first causal answer
Cheap non-experimental economic time series may yield a
first hypothesis!
(Or at least a priority ordering on the causal search space.)

2 / 13



Problem formulation and previous approaches

Given
A finite multivariate time
series X1:L = X1, . . . , XL of
measurements of a system.
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Goal
Infer the causal structure of the system.
I.e., correctly predict the outcome of targeted
manipulations of the system’s mechanisms that generate X1:L.
(→ Deeper understanding of the system.)

Previous approaches (selection)

I Regress Xt on Xt−1, interpret r. matrix causally [Granger1969]
I Assume linear latent process and sparsity [Jalali2012]
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Outline of our approach

Underlying idea

I If we had measured the evolution of the whole universe, then
we might infer the causal structure underlying X1:L from this
“observational data” (using Granger/PC algorithm).
[Granger1969, Pearl2000, Spirtes2000]

I Otherwise: problem of potential hidden confounders.
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A confounder Z 1 in the hidden
part of the universe ...
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... may introduce spurious
association between X 1 and X 2.

4 / 13



Outline of our approach

Our approach consists of two parts

Part 1: Examination of identifiability

We present certain model restrictions that make the crucial
parameters of partially observed processes identifiable.
(“Identifiable” = mapping from parameter to P(X ) is injective.)

Part 2: Two tailored estimators
We present two algorithms that work on simulated data under
the respective assumptions from part 1.
(Conjecture: (“approximate”) consistency, due to identifiability.)
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Part 1: Examination of identifiability

General model assumptions

Statistical model for X1:L

X = (Xt)t∈Z together with an
unmeasured multivariate Z
with dim(Zt) ≤ dim(Xt) is a
stable vector autoregressive
(VAR) process,(
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Causal claim
The matrix B can be interpreted causally, i.e., it correctly pre-
dicts the outcome of randomized empirical experiments on X .
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Part 1: Examination of identifiability

Theorem 1: conditions for identifiability of B, C

If:
(

Xt
Zt

)
=

(
B C
D E

)
︸ ︷︷ ︸

A

(
Xt−1
Zt−1

)
+ Nt .

1. All noise terms Nk
t are

non-Gaussian.
2. N1

t , N2
t , . . . are jointly independent for all t.

3. Certain generic full rank assumptions w.r.t. the transition
matrix A and the autocovariance hold.

Then: Given only P(X ),

1. the matrix B is uniquely identifiable,
2. the columns of C with at least two non-zero entries are

identifiable up to scaling and permutation of those columns.
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Part 1: Examination of identifiability

Theorem 2: weaker but including the Gaussian case
(

Xt
Zt

)
=

(
B C
D E

)
︸ ︷︷ ︸

A

(
Xt−1
Zt−1

)
+ Nt .

If:
1. D = 0 (i.e. no influence from Z to X ).
2. Certain generic assumptions regarding A and the noise

covariance matrix hold.
(“Generic” = only excludes Lebesgue null set of parameters.)

Then:
Given only the autocovariance of X , B is identifiable up to(2 dim(Xt)

dim(Xt)

)
possibilities.

(
(·
·
)

= binomial coefficient.)
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Part 2: Two tailored estimators

Two estimation algorithms (sketch)

Algorithm 1: based on variational EM
I Assuming a parametric model: the complete VAR model with

mixture of Gaussians (MoG) as noise.
I Maximizing a variational lower bound L to the marginal

log-likelihood based on mean field assumption (a factorized
approximation).

Algorithm 2: using only the autocovariance
I Idea (from Theorem 2): B fulfills a certain equation w.r.t. the

autocovariance of X .
I Replace it by empirical autocovariance and calculate solutions.
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Part 2: Two tailored estimators

Evaluation of Algorithms 1 and 2 on simulated data
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Algorithm 1 on X
Linear Granger on X

2-variate observed X ,
1-variate hidden Z .
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Algorithm 2 on X
Linear Granger on X

1-variate observed X ,
1-variate hidden Z .
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Part 2: Two tailored estimators

Evaluation of Algorithm 1 on real data

Experimental setup

I W =

 X 1

X 2

Z

 =

 cheese price
butter price
milk price


I Assumed ground truth: linear Granger applied to complete W

Outcome
I Error (‖ · ‖F) of linear Granger applied to only X : 0.0662.
I Error of Algorithm 1 applied to X : 0.0753 - slightly worse.

Remark
The full W does not fulfill our model assumptions, e.g. the
estimated lag is 3. A certain model check on X detects this!
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Conclusion and references

Future directions
I Finding “linear enough” application domains.
I Identifiability in non-linear latent processes.

Take home message

From partially hidden linear time series,
important “causal” properties often can still be identified.
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Some additional remarks

Model checking
I Parts of our model assumptions can be checked from only X .
I E.g. using certain independence tests and tests for Gaussianity.

Proof ideas
I Theorem 1: overcomplete ICA.
I Theorem 2: B solves a matrix polynomial defined from the

autocovariance of X .
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