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the number of connected intelligent agents (sensors and actuators)

Problem statement:

How can an agent autonomously integrate as much relevant
data (or higher level information) as possible from others
to inform causal model/ actions?

Examples:
» Road experience transfer between different self-driving cars

» Path descriptions based on landmarks or maps
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Various approaches to various versions of this problem:
» Reinforcement learning (RL)

» Learning from demonstrations (LfD)
» Transfer learning for agents (TLA)
» Multi-agent systems (MAS)

» Knowledge representation

(Inaccurate? Missing something?)
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1. Simulated experiments — to obtain better understanding

2. Causal models — e.g. for transfer across different agent
hardware

Structure for both:
» introduce toy instance of the problem

> illustrate approach



Experimental view on information integration in autonomous agents

Problem instance: navigation from video in ‘Malmo’

Background: Al experimentation platform ‘Malmo’: library for
programming agents for ‘Minecraft’ (computer game) [Bignell2016]



Experimental view on information integration in autonomous agents

Problem instance: navigation from video in ‘Malmo’

Background: Al experimentation platform ‘Malmo’: library for
programming agents for ‘Minecraft’ (computer game) [Bignell2016]

Task: unknown landscape; navigate to visually recognizable goal



Experimental view on information integration in autonomous agents

Problem instance: navigation from video in ‘Malmo’

Background: Al experimentation platform ‘Malmo’: library for
programming agents for ‘Minecraft’ (computer game) [Bignell2016]

Task: unknown landscape; navigate to visually recognizable goal

Available heterogeneous information:
» agent's own sensors (position g, image y) and action (move
left/right/forward /backward) at each time t

» “local controller” (past experience on “local physical laws™)
» video yg, of a different (“source”) agent

that gets to the goal n
NB: no actions given! — allows e.g. for differing

action spaces
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Fori=1,...,L
1. Use ctl/ and interaction with environment
to search locally around position g;_1
for position g; with image y most similar to y;*
(formally: g; := arg ming || Gauss * (y; — E(Y|Q = q))|2)
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A simple integrating agent algorithm

(Given: local controller ct/, source agent'’s video y;',)

Fori=1,...,L
1. Use ctl and interaction with environment
to search locally around position g;_1
for position g; with image y most similar to y;*

(formally: g; := arg ming || Gauss * (y; — E(Y|Q = q))|2)
2. Use ct/ to go to g;

Proof-of-concept implementation - evaluation on next slide
» ct/ := proportional controller based on previous experience

> uses teleportation in search for g;
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Evaluation on “Malmo”

Source agents trajecory (blue) and integration method (red):
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Problem instance: experience transfer between cars

Setup: two (or more) self-driving cars with different hardware
Task — w.l.o.g. for car 1: safely follow some trajectory (e.g. road)

Available heterogeneous information:
» hardware specifications of all cars (e.g. table with HP, ...)

> past experiences (actions/observations) of all cars

» influence structure between relevant variables (“causal DAG”
see next slide)
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Background: causal models & transportability

Def.: diagram (DAG) plus factorizing distribution over set of
random variables [Pearl2000]

Reason about (identifiability of) outcomes of manipulations of
the underlying system

Main example: “X causes Y" := "intervening on X changes Y"

But useful for reasoning about related systems in general -
example:

X V4 Y

= P(z,yx) = P(z|x)P(y)

= system P(z, y|x1) contains information P(y)
about modified system P(z, y|x2) [Pearl2011]
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u(t) (1)
y: position
l l F: force from engine
HP — F(t) G(t) G: other forces (friction etc.)

\ / HP: horse powers
u: control signal
)
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Causal reasoning for toy scenario

u(t) (1) B
y: position
l l F: force from engine
HP — F(t) G(t) G: other forces (friction etc.)
\ / HP: horse powers
u: control signal
y(t)

1. Assume two cars only differ in HP = hpy, hps

2. causal DAG = car 2's experience about mechanism p(G|y)
transferable to car 1.

3. Additivity of y & knowing p(F|u, hp1) = identify dynamics of
car 1l

E.g.: Car 1 avoids slipping on oil spill at position not visited before
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Conclusions

Experimental view

» Simple “integrating agent” partially succeeded in toy
naviagtion task on “Malmo”

» Important: take several measuremens then averaging;
problem: repetitive structures

» NB: Other Al platforms exist, such as “OpenAl Gym”

Causal view

» encode mechanics and reason about transferability
» Unclear: can this be done by classical say Bayes nets?

Future directions

» Use machine learning to infer “integration mapping”

» “Universal representation” ~+ n instead of n?> mappings
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